Category Archives: Energy Storage

Whole Home Battery Backup System – Sol-Ark/Storz Power Outage Demo

Hey I’m Adam with the Solar Truth here and I’m with Andy out in Temecula California, and we did a really cool uh battery backup system, not totally off-grid. You know it is grid tied, but it could go off-grid.

You know we got battery solar, SolArK inverters and a 10.5 kilowatt LG solar panel system um. You know so uh so Andy. If you want to uh just talk about why we, what your goal was here and and what we were trying to accomplish with your house yeah thanks Adam well, when I was looking for a solar system, I was really looking for a system that could take our House to be the on the critical circuit, so the whole house could be powered and um looking around at different systems and different companies.

I really couldn’t find a solution until I came to SunPro and I’m not being paid for this, but uh it’s for real. These guys know what they’re doing they do. Customized designs and you’ll see from the installation that uh it delivered exactly what they promised they would.

So it’s really great yeah and I know Andy’s uh, one of his big concerns was was off-grid. You know we’re out here. We’re actually just outside the fire zone, so we didn’t get like the really big battery rebate that is available in California for a little bit longer um.

But we got a pretty good uh uh size rebate, it’s about 6500 bucks yeah, just over 69 um, so which is the standard rebate but locked in at a tier that that kind of went away and it’s dwindling down um.

But we were able to reserve that a while ago and get that locked in what the concern was was a lot of production when we’re off grid, especially when uh in the winter like when the sun’s not out as much.

So. That’S why these these panels are actually at uh more tilted a little bit more than normal, so they’re at about they’re right about 30 degree angle at perfectly true magnetic south, and the reason for that is in the summer, with a little bit flatter array like 15 To 20 percent you’re getting more production because there’s more hours in the in the summer, the sun’s out longer, but in the winter you’re, not nearly as getting as much production when you don’t have as much sun.

So then you need more production to charge your batteries to get, you know that production too. So anyway, you get a little bit more uh winter production with this system and a little bit less summer production because of that, but overall the production isn’t much less cumulatively.

Um, so it’s you know going to provide more uh when you need it basically to get you through those winter nights and stuff, and then we did a pretty cool battery backup system here too, that we’ll show you in a second and you know able to provide um, you know pretty much all the power for his home here, so we got two solar, 12 kilowatt inverters here.

These are very popular with prepper scenarios. So in fact, a lot of people actually replace other battery systems like even Tesla powerwalls, for example, when they can’t provide enough power for backup cases.

So, there’s actually quite a few advantages with these, when you have off-grid one is, you can do dc connection to your solar. So if your battery totally drains a lot of battery systems, can’t even restart you have to like manually start them or charge the batteries, it can create a lot of problems, but with dc power.

As soon as that sun hits those panels, the batteries are charging and the system’s on. They also can do load shedding and reduce demand charges automatically like with commercial scenarios too so they’re just very universal and have they can auto start generators, there’s just a lot of capacity with these.

So if you know like here, we can add an auto start generator if you want now, you know if that ends up being needed, so we have uh. You know 12 kilowatts. What that does is one it can have a lot of solar connected to it.

You can have 12 to 16 kilowatts of solar actually connected to it, each one and then um they can do 50 amps of power each. So that means we got 100 amps of backup power, which you would need five Tesla Powerwalls to do that.

So we have one of those arrays out there connected to this one and then two of them connected to this one and then we’re charging our stores. Batteries that we have over here I’ll show those in a second and um yeah.

We’Ll do a live test also to shut the power off and and uh I’ll be out here, shutting it off and then we’ll video inside as it’s being shut off, and you know using you know whatever we want in the house, um with uh uh.

Basically, the power being awful okay, so we have a stores battery system here, uh. These have a lot of advantages versus a lot of batteries on the market. One is their lithium ion phosphate, which can’t catch fire explode.

It’s non-toxic lithium-ion technology, batteries like cell phones and cars, are lightweight, but they have those disadvantages to them. You know you shouldn’t put it on like a bedroom wall, for example, so these actually have 8000 life cycles, which will generally give you about 15 to 20 years of operating time.

Most battery systems are about 4000 life cycles and it’s a 15 year production warranty, uh they’re 5.12 kilowatt hours each. So the whole system is about 20.5 kilowatt hours, which will give you like one to two days run time uh when the when, when it’s raining and your solar is not working uh, it really depends on how many loads you have going and what you’re using off-grid Uh and when the power goes out, they’re also stackable up to 14 batteries.

So you could do a pretty large system you could add on later, so we can check out the inverter system now and show you the monitoring and and what you can all see from the system as it’s functioning. So the solar inverters, unlike a lot of other inverters out there, actually have a display screen on them and a mobile app.

So you can look at it. However, you want, you know you can come out here if uh something’s wrong with your phone and uh just tap on the screen there. Right now we have uh power comes from the solar, we have energy going to the grid.

We have energy going to the house and we have the battery state of charge so um on this one. We’Ve already had uh 48 kilowatt hours today and about half that, on the other one, with with a third of the arrays and uh, the battery is at 98 charge right now.

We have, you, know power going to the grid and to the home. So on your app um, you have uh everything you can see here too, and you can actually, you know, choose what you can see um and look at your production, the battery state of charge, uh the energy same.

You know same thing on there, except a little clearer and kind of all the options you want. Then you can adjust your settings on the inverters as well. Here. Our main panel here is actually a 400 amp panel um.

Our main disconnect is here, and then our solar inverters and the house is actually on this panel over here. So what I’m gonna do for this test is shut off our main panel and then we’re powering the backup panel and the solar and we’ll do a live feed into the house running stuff and show how that’s gonna work.

Okay, so we’re doing a live test. Now I’m gonna go ahead and shut off the main power to the house and we’re gonna run some equipment in the house. Here we go three two one all right: simulating uh, off-grid power shut off all right, everything’s still running.

There was just a slight little flicker and we’re boiling water right now on an induction cooktop and it’s on a boost setting the next thing we’re going to try is run the microwave. At the same time. Here we go we’re heating, a cup of water, with a microwave running at full blast, we’re boiling the water.

Now I’m going to turn on the oven. Okay, the oven is preheating and all our lights. Halogen lights are on indoors and not a hiccup everything’s running and now yeah over here we have, our solar inverter has uh, it shows the grids off, yellow and now all the power is coming from our solar system, as you can see there and the batteries as You can see here on both inverters, so that’s what our app will be, showing now too, that um the batteries are starting to discharge and uh there.

We got all our information there too, on the solar battery and everything pretty cool, all right cool. We have water boiling and the water’s boiling in here. You may recognize this because we were trying to do a different battery system before called Paladin, and it sounded amazing.

It kind of sounded too good to be true to be honest and uh that that’s what I believe it was kind of too good to be true, so you got to be really careful. You know SolArk has been around for a long time, so we ended up uh just having a lot of delays not able to get the battery.

We got the the container, and that was it just the cabinet. The batteries going, no inverters, no batteries or anything and uh. You know I didn’t want to. I didn’t trust that uh, that it was gonna happen.

So I ended up switching to SolArk, which just has a lot of advantages that are uh, reliable and they’ve been around for a long time. I think, like at least like 10 years and um uh they’re they’re, probably the most common battery in a proper situation.

They’Ve won awards for being the best thought out: uh off-grid battery system and uh generator uh available battery, so uh. This is a great way to go and it’s got a great monitoring system, just everything’s dialed in so it ends up being just an amazing solution.

If you need a lot of power off-grid all right, thanks for watching our video on Sol-ark, live test demonstration with our off-grid or grid tie, but can go off-grid battery backup system uh. That test we did was actually the first test we had done here and uh.

It was live and um, you know no edits and we just filmed it as it was and worked great worked perfectly so um that was pretty awesome and um. Uh yeah make sure you like and subscribe to the videos I’m gonna try to do a lot more of these videos of like pretty cool off-grid systems.

We’ve been doing a lot. I’ve been helping a lot of battery backup systems, mainly because of the fire rebate out in California, because it’s just such a good rebate. That’s uh, amazing and uh, sadly not going to be available for very much longer because it looks like they’re, not funding it.

Uh more so join us next time and thanks for watching

Source : Youtube

Three Batteries That Are BETTER Than The Tesla Powerwall

Welcome to the Solar Energy Channel, where you’ll get an honest inside look at all things solar. In this video, we’re gonna talk about three great alternatives to the Tesla Powerwall. I’m Warren and I’m Larry.

And don’t forget to like, and subscribe so that you’ll receive notifications for future videos, just like this. You know Larry, everybody’s heard of the Tesla Powerwall. It’s a popular product, people associated with Tesla and the company and the brand, but there are great alternatives to the Powerwall that are out there.

Yes, and there’s three in particular that we offer. One is the SolarEdge Energy Hub with an LG Chem battery. Another one is, is the SMA battery inverter with an LG Chem battery. And then a third option is the Enphase Encharge system.

Great, let’s dive into that first option, the LG Chem battery with the SolarEdge storage option. How is that better than a Powerwall? – Yeah so one of the really neat things about the SolarEdge Energy Hub system with the LG Chem battery is that you can add up to three inverters to one backup system, and each inverter can have up to two batteries.

So you can end up with a lot of storage, not only that, but you can also integrate an EV charger as well, which is another neat feature with the energy hub. So now let’s talk about Larry, SMA with the same LG Chem battery and how that compares to a Tesla Powerwall.

Yeah, so SMA is a AC coupled system, which means that you can add it onto an existing system. That’s the great part about the SMA inverter setup. It’s a great add on solution, which is really their strength.

They don’t have the option to integrate with the EV charger, but it’s a great add on solution. – Great, so you could decide to do that at any time. You can put in solar now and add on an SMA battery with the LG Chem a year from now or six months from now.

Correct, yup. – And then finally, let’s talk about the Enphase system. – Enphase also has a great system and it’s similar and set up to the SolarEdge Energy Hub, in that you can add multiple batteries.

You can set it up to backup your whole house. If you’d like to do that. Enphase can be a little bit more expensive, than SolarEdge Energy Hub, but another great technology. Great, and overall, the SolarEdge with the SMA with the LG Chem batteries or the Enphase, how do they compare price-wise to the Powerwall? Yeah, great questions.

So they’re all gonna be a little bit more expensive than the Powerwall overall, but they’re also more robust and have additional features that you can build out to your system. Great. – So in summary, the Tesla Powerwall is a great brand.

It’s a great product, but there’s three alternatives that we think are just as good or better to the Tesla Powerwall. That’s the SolarEdge Energy Hub Inverter with an LG Chem battery, an SMA battery inverter with that same LG Chem battery, or the Enphase Encharge system.

And the nice thing about the SMA battery inverter is that you can install it either during your solar installation or at any time after. So if you have an existing system, and you’re thinking about adding on batteries, that may be a great solution for you.

Thanks for watching, if you enjoyed this content, don’t forget to like this video and subscribe to our channel for future releases.

Source : Youtube

Vestwoods Power: Tesla Powerwall KILLER?

I have reviewed some power stations in the past few months, but the VESTWOODS Power I’m going to present today seems to have unique highlights that make it different from the rest. And today they invited me to their lab to check out everything.

So, what’s special about it? Let’s take a closer look! Starting with the unboxing. We have a bag of accessories that you need to get this power station to work and the main VESTWOODS Power unit. Definitely included for the official unit will be some paperwork like a manual or warranty card.

Moving on to the design, here are all the ports on the machine. We have two communication ports, an ON/OFF switch, and two sets of positive and negative ports. Moving down are the indicators. Turning to the back, we have the bracket so you can mount the machine to your wall if needed.

While today in the lab, we are not going to mount it on a wall. We’ll just put it on the floor to test. But before the test, let me walk you through the key specs first. The one we were testing was the VE51100W model with a 5.12KWh capacity, they have a larger version boasting a capacity of 14.33 kWh. The cost that comes with such an enormous capacity of course is the weight. The weight of the two is 54kg and 128.5kg respectively, this is definitely not something you can easily move around.

But we can see the logic here, they are designed to let you mount on a wall or put in a corner instead of moving it around. It has more than 6000 cycles and was designed to use for more than 15 years.

For others, you can check out on the screen. To use the VESTWOODS Power, you have to connect it to a solar inverter, VESTWOODS also sells that as well. We use the cables that come with the box to connect the positive, negative port, and the Communication cable with the solar inverter, and then press the ON/OFF switch to turn it on.

As we can see, the indicator will light up as well. Now moving to the max loading power test. Of course, the max loading power relates to the solar inverter as well. I’m just so glad that it handles those high-power electrical appliances without a hiccup.

The next test is the charging and discharging speed. We used the RePower, a professional battery test machine to test that, as you can see it reached almost 100amp for charging, which means, theoretically, you could fully charge this 5.12KWh capacity in just one hour because the VESTWOODS battery backup we were testing came with 51.2 nominal voltage. That’s fast compared to some of the big players on the market. And here is the discharging.

Just like you would expect, the VESTWOODS Power offers an App. Here on the home page, you can clearly see the status of it. How much power you get from the solar panel or the grid and the remaining capacity and consumption of the battery.

You can check your production power and consumption each day. You can view more from the Statistics, so you will know your total production, total grid Feed-in, etc. Also, you can check more data about your Inverter.

Alright, that’s a very simple and first look at the VESTWOODS Power. Compared to the “Portable” Power Stations I’ve reviewed before, the advantages are obvious, it offers a massive capacity that lasts for days that other normal ones couldn’t even imagine.

It integrates with your family grid power system seamlessly even when power outages occur, your power still stays on. And it stores solar energy. This is great as you probably live in an area with time-of-use charges, like the sample plan in California, 33 cents from 8 am to 4 pm and then 53 cents from 4 pm to 9 pm, that’s a much higher rate.

All solar generation happens during the day so if you are not home and you are not consuming that power you could store it in your battery and use it when the peak charges are present. But like all such battery backups, they are not cheap, definitely more expensive than let’s say, a whole home generator.

Usually, the price lies between $15,000 to $20,000 for a 10 – 15 kWh backup. Gladly, if we compared to other big brands, VESTWOODS still has the best price per Wh. Thus reliability and safety are the two most important factors when buying such battery backups.

The VESTWOODS adopts a new Lithium Iron Phosphate battery technology, which has a higher resistance to thermal runaway, and doesn’t set on fire or explode under pressure so they are safe and reliable, with 6,000 cycles and 10 years of warranty, that could definitely earn back all you invest for such a product.

So if you experience power outages often for an extended period of time and you want to be able to stay warm or cold, or for those areas with extreme weather events that are without power for weeks that could lead to severe damage, then this VESTWOODS is more of a convenience reason to buy and sometimes even a necessity, what do you think?

Source : Youtube

Tesla Powerwall 2 – Completely Off Grid System

This specifically designed off-grid system was  installed at cannons creek in the scenic rim   region of queensland and is the first stage  of a project Springers Solar will manage moving this home to complete self-sustainability.

The customer approached Springers Solar before  building their energy-efficient holiday home   not wanting a large space occupied by a battery  bank they required the tidiest setup as possible. So for Springers have installed 22 Winaico 325  watt full black modules, each panel is fitted with   a SolarEdge DC optimizer and the entire system  is managed by a SolarEdge 6kW HD wave inverter. Springers Solar also installed 2  Powerwall units and a generator.

The property has a tablet installed for on-site  monitoring at any time all components used have   off-site monitoring capabilities easily  accessed from anywhere in Australia. Once completed the system will  double in size with 2 more batteries and 22 more solar panels booked for installation when  the remainder of the property has been built.

Due to the location and  cost of grid establishment,   the customer needed complete off-grid  functionality installing a generator was essentially to operate as backup power for the solar modules and Powerwall units. We will return to Cannon’s Creek once the project  is completed to see how the system is performing.  Thank you for watching leave us a like,  comment, and subscribe for more videos like this

Source : Youtube

Tesla Powerwall Review – Angela’s Story

A lot of people wonder whether buying a Tesla Powerwall, is a good investment. Well, we recently spoke to Angela, one of our recent customers about what she’s getting from her Tesla Powerwall. So when the installation happened and part of that sort of sign over process was like, Okay, now we’re gonna show you what it would be like, in a blackout and obviously, nothing happened for me.

It was an experience because my fridge kept being on, I think that was all that was running at the time. But you know, that’s probably the most important thing. For me, is probably only the kettle cause I love a cup of tea.

My computer – I could probably do without it because you know, as long as I can charge my phone, I can run my business. But my children would probably argue that they would need every powerpoint for their … To charge their devices. But for me the kettle is the most important thing we moved from a very small property, like 90 square meters to now sort of a two story house with a pool. So I thought oh my gosh, like, we’re gonna use power a lot more.

I could see it only being an advantage. And in the end, it has been. No one actually said to me, you’re going to get 99%, and I think on a yearly average I’m I think I’m at 96% self sufficient every day.

But that’s because there are some days in winter where you know, you might have rainy days, so that brings the average a little bit down, but really in the last two or three months, I’ve been 99% every day.

I was at $600 per quarter. And my last bill, which was the first bill with a fully installed Powerwall was minus, I think minus $45 But that was sort of running at the end of spring. So now summer I can see I have contributed a significant amount more of energy or kilowatts.

Back to the grid, so I’m expecting a little bit more. And, I actually put that towards my gas bill. This is no surprise to anyone we mean we’re putting a big pressure on Mother Earth. And I really feel you have to start with yourself.

So if I can do this in my own household, then other people could do it too. Yes, I’m also contributing back energy into the grid on a small scale, but still I’m doing something and I think if anyone, if anyone could do the same, then together we can really make a difference.

Source : Youtube

Iron-air batteries could store and discharge energy for far longer and at less cost than lithium-ion

A new battery design holds out the potential for great improvements over the current industry leading lithium-ion battery.

Designed by a Massachusetts company that is run by a former Tesla executive, the battery technology could be far less expensive, as well as increase the discharge time from the current 4 hours of Lithium-ion to 100 hours.

The founders of the company share a goal to reshape the global electric system by creating a new class of low-cost multiday storage batteries.

The implications for solar energy systems are nothing less than breathtaking.

Scientific American reports:

“A U.S. company is designing a large battery that it says could help decarbonize the nation’s power sector more cheaply than lithium-ion storage systems—and with domestic materials.

The concept, known as the “iron-air battery,” has impressed U.S. experts. Unlike current lithium-ion batteries that require expensive materials mostly from other countries such as lithium, cobalt, nickel and graphite, the proposed battery stores electricity using widely available iron metal.

It operates on what scientists call the principle of “reversible rusting.” The low cost and high availability of iron could allow iron-air batteries to store electricity for several days during periods of low solar and wind power generation. One such iron-air battery is being designed by Form Energy, a company based in Massachusetts that’s co-run by a former Tesla Inc. official.

Although iron-air batteries were first studied in the early 1970s for applications such as electric vehicles, more recent research suggests that it may be a “leading contender” to expand the nation’s future supplies of green electric power for utilities, according to George Crabtree, director of the Joint Center for Energy Storage Research at Argonne National Laboratory.

Lithium-ion batteries, which are used in cars and for utility-scale storage, discharge electric power for about four hours. The much larger iron-air battery can store and then discharge power for as long as 100 hours, giving utilities four days of electricity to bridge renewable power gaps that can occur in U.S. grids.

Crabtree, a physicist, predicted that the iron-air battery would also help the U.S. decarbonize industrial operations and buttress the Defense Department’s plans to rely more on renewable energy.

https://www.scientificamerican.com/article/rusty-batteries-could-greatly-improve-grid-energy-storage/

You can read the entire story at Scientific American.